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Urban impervious surfaces have been recognized as a significant indicator for various environmental and
socio-economic studies. There is an increasingly urgent demand for timely and accurate monitoring of
the impervious surfaces with satellite technology from local to global scales. In the past decades, optical
remote sensing has been widely employed for this task with various techniques. However, there are still a
range of challenges, e.g. handling cloud contamination on optical data. Therefore, the Synthetic Aperture
Radar (SAR) was introduced for the challenging task because it is uniquely all-time- and all-weather-
capable. Nevertheless, with an increasing number of SAR data applied, the methodology used for imper-
vious surfaces classification remains unchanged from the methods used for optical datasets. This short-
coming has prevented the community from fully exploring the potential of using SAR data for impervious
surfaces classification. We proposed a new scheme that is comparable to the well-known and fundamen-
tal Vegetation-Impervious surface-Soil (V-I-S) model for mapping urban impervious surfaces. Three sce-
nes of fully polarimetric Radsarsat-2 data for the cities of Shenzhen, Hong Kong and Macau were
employed to test and validate the proposed methodology. Experimental results indicated that the overall
accuracy and Kappa coefficient were 96.00% and 0.8808 in Shenzhen, 93.87% and 0.8307 in Hong Kong
and 97.48% and 0.9354 in Macau, indicating the applicability and great potential of the new scheme
for impervious surfaces classification using polarimetric SAR data. Comparison with the traditional
scheme indicated that this new scheme was able to improve the overall accuracy by up to 4.6% and
Kappa coefficient by up to 0.18.
� 2018 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction Gibbons, 1996; Bannerman et al., 1993; Schueler, 1994; Sleavin
1.1. Scientific significance of urban impervious surfaces

Among urban land covers, urban impervious surfaces mainly
refer to the built-up areas, including pavements and rooftops, that
can be made up of diverse materials, such as asphalt, concrete,
plastic and metal materials. Conventionally, urban impervious sur-
faces have been identified as a critical indicator for the process of
urbanization and for the environmental impacts of urbanization
(Arnold and Gibbons, 1996; Weng, 2001; Wu and Murray, 2003;
Zhang et al., 2015). They were commonly used in lots of studies
on environmental consequences of urbanization (Arnold and
et al., 2000), hydrological, atmospheric and environmental models
to simulate and study the urban hydrological process (Arnold et al.,
1982; Espey et al., 1966; Jacobson, 2011; Seabum, 1969; Yang
et al., 2010), urban atmospheric process and urban climate change
(Hu et al., 2014; Ooi et al., 2017), urban solar energy balance, urban
land surface temperature and the urban heat island (Lu and Weng,
2006; Schueler, 1994; Slonecker et al., 2001; Weng et al., 2006;
Yuan and Bauer, 2007), as well as socio-economic studies such as
measurement of urban growth, estimation of population distribu-
tion, and variation of housing prices (Wu and Murray, 2003).
1.2. Urban land cover classification from synthetic aperture radar
(SAR) data

Numerous studies have focused on the urban land use and land
cover (LULC) mapping using various polarimetric SAR data. Since
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the active and side-looking SAR is sensitive to the dielectric and
geometric properties of urban land surface such as structure and
surface roughness, SAR data provided complementary information
for LULC (Calabresi, 1996; Henderson and Xia, 1997; Stasolla and
Gamba, 2008; Zhang et al., 2012; Zhang et al., 2014). With a num-
ber of studies exploring SAR data using their backscattering and
polarimetric information, the diversity and complexity of LULC
were identified and reported (Dekker, 2003; Gamba and Aldrighi,
2012; Guo et al., 2014; Hu and Ban, 2012; Majd et al., 2012; Niu
and Ban, 2013; Tison et al., 2004; Voisin et al., 2013; Zhang et al.,
2012; Zhang et al., 2016; Zhang et al., 2014). For instance, different
backscatters in the urban environment were analyzed to examined
the single, double and triple bounce scattering mechanism in
urban areas and concluded that dominant urban scatters are single
bounce from roofs and double bounce from ground-wall structures
(Dong et al., 1997). Various LULC classes were analyzed in urban
areas using polarimetric SAR data (Gamba and Lisini, 2013; Li
et al., 2010; Niu and Ban, 2013), with different polarimetric decom-
positions including Pauli, Freeman, Touzi, Cloud-Pottier and H/A/
alpha decompositions (Bhattacharya and Touzi, 2011; Hariharan
et al., 2016; Niu and Ban, 2013; Park and Moon, 2007; Pellizzeri,
2003). Different classification methods were employed to conduct
the LULC classification such as the maximum likelihood based
methods (Li et al., 2010; Wu et al., 2008), support vector machine
(Zhang et al., 2010), adaptive Markov random field (Niu and Ban,
2014) and fuzzy classification (Park and Moon, 2007). Neverthe-
less, impervious surfaces were seldom focused in previous studies,
with only a few studies using polarimetric SAR. Fully polarimetric
Radarsat-2 data were combined with SPOT-5 data to extract
impervious surfaces using C5.0 decision tree algorithm in Beijing,
China (Guo et al., 2014). Dual polarimetric SAR data (e.g. ALOS/PAL-
SAR) and single polarimetric SAR data (e.g. ENVISAT ASAR and
TerraSAR-X) were also employed to extract impervious surfaces
with the support of different optical satellite data (e.g. Landsat
TM/ETM + and SPOT-5) in the metropolitan regions of the Pearl
River Delta (Zhang et al., 2016; Zhang et al., 2015; Zhang et al.,
2012; Zhang et al., 2014). Nevertheless, most of these studies fol-
lowed the conventional scheme (i.e., vegetation, bright and dark
impervious surfaces, bare soil and water surface), which does not
consider the dielectric and geometric properties of urban land sur-
face, which are the determining factors in SAR remote sensing data.
1.3. Previous scheme of impervious surfaces classification

Given its importance and wide applications, impervious sur-
faces classification (ISC) has been intensively studied using various
types of space-borne and airborne remote sensing data. The first
attempt can be dated back to the Vegetation-Impervious surface-
Soil (VIS) conceptual model, where Ridd analyzed the composition
of urban land covers and divided them into vegetation, impervious
surface and bare soil, after masking out the water surface, which
was considered to be relatively easily identified (Ridd, 1995). This
study set up a theoretical model for ISC from remote sensing data.
Following the VIS model, spectral mixture analysis (SMA) was
employed to implement this conceptual model to estimate imper-
vious surfaces at the sub-pixel level from satellite data. Wu and
Murray (2003) applied this SMA method with the VIS model and
further divided impervious surface into bright impervious surface
and dark impervious surface after considering the significant dif-
ferences in their spectral reflectance. This contribution provided
the community with a better understanding of the composition
of urban covers. A number of later studies have been conducted
at the sub-pixel level, per-pixel level and segmented object level
(Deng and Wu, 2013; Hu and Weng, 2009, 2011; Van de Voorde
et al., 2011; Weng and Hu, 2008).
However, the composition of impervious surfaces in SAR data
and their dielectric and geometric properties were insufficiently
addressed in previous studies regarding the classification of urban
impervious surfaces. This study aimed to develop a new scheme for
impervious surfaces classification by investigating and under-
standing the composition of urban impervious surfaces in polari-
metric SAR data. The compositions of land covers in the VIS
model were re-examined under the context of their polarimetric
mechanism in the SAR data, and thus various subclasses of each
land cover class were identified to form the new scheme of ISC
in polarimetric SAR data.
2. Study area and data sets

2.1. Study sites

The Pearl River Delta (PRD) has witnessed the most dramatic
urbanization process in the world in the past four decades under
the implementation of the reform and opening policy of the Chinese
Government. Additionally, the PRD is a special metropolitan area
because it includes three different urban planning and develop-
ment policy bodies, Mainland China, Hong Kong and Macau. In
PRD, numerous areas of urban impervious surfaces have been pro-
duced and have resulted in a wide range of environmental issues,
such as urban flooding and air and water pollution. These impacts
have been threatening the health of the environment and human
beings in the whole PRD region, including Mainland China, Hong
Kong and Macau. Continuous or timely monitoring of the urbaniza-
tion dynamics using satellite remote sensing technology is impor-
tant. However, the whole region is located in a subtropical climate
zone, which is characterized by rainy and cloudy weather through-
out the whole year. This weather brings great difficulties for optical
remote sensing technology. Therefore, with the capability of pene-
trating clouds and rain, SAR remote sensing provides an ideal
approach for monitoring the PRD area over a regional scale. In this
study, three sites were carefully selected, including Shenzhen City
from Mainland China, Hong Kong and Macau. The geographic loca-
tions of the study sites in the PRD are showed in Fig. 1. The Macau
site actually includes a part of Zhuhai City (Wang Kam Island) from
the Mainland.

2.2. Satellite data

Three scenes of fully polarimetric Radarsat-2 data at a fine res-
olution of 8 m were collected for the three study sites. The acqui-
sition dates for the three Radarsat-2 data are listed in Table 1.
These polarimetric SAR data were first calibrated using the Sentinel
Application Platform (SNAP) toolbox provided by the European
Space Agency (ESA). Various polarimetric decomposition methods
were applied using SNAP. Detailed information about the decom-
position methods were provided in Section 3.1. Finally, both the
original SAR data and the polarimetric features were geocoded
under the geo-reference systems of WGS 1984 and UTM projection
system at Zone 49 N. Moreover, very high resolution optical satel-
lite data fromWorldview-2 and Google Earth at a spatial resolution
of 2 m were used as the reference data. As shown in Table 1, the
acquisition dates were very close to the acquisition dates of
Radarsat-2 data in the three study sites. More details about the ref-
erence data are provided in Section 3.4.
3. Methodology

The methodology of this study is illustrated in the flowchart in
Fig. 2, showing the proposed impervious surface classification
scheme (within the dashed rectangle) and the working flow to
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Fig. 1. Geographic locations of the study sites in the Pearl River Delta.

Table 1
The acquisition dates of the satellite data and field survey data used in this study.

Study site Radarsat-2 data Very high resolution
reference data

Field survey
data

Shenzhen 03 September 2014 29 October 2014 8 January 2016
Hong Kong 12 July 2015 16 January 2015 8 October 2013
Macau 03 September 2014 04 September 2014 13 April 2016
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evaluate this proposed scheme. In general, the proposed scheme
was based on the urban land cover scattering mechanism modeled
by the H/A/Alpha decomposition. Nine subtypes of urban land cov-
ers can be identified according to their scattering mechanisms.
Since different scattering mechanisms can also be reflected in var-
ious polarimetric features extracted from different decomposition
methods, several typical decomposition methods were employed
to evaluate the importance of different polarimetric features to
the classification of the nine subtypes of land covers under the pro-
posed classification scheme. Different parts of the methodological
flowchart are described in details in this section.

3.1. Terrain scattering modeling and H/A/Alpha decomposition

In general, polarimetric SAR data include not only single, dual
and fully polarimetric SAR data but also other data derived in other
polarimetric modes (e.g., compact polarimetric data). To study the
ISC in a more general sense, the fully polarimetric mode was
employed in this study. The fully polarimetric SAR data can be
described by the backscattering coefficient matrix S:

S ¼ SHH SHV
SVH SVV

� �
ð1Þ

where SHH, SHV, SVH, SVV denote the backscattering coefficients on
four different polarizations. In this study we accept the symmetric
assumption between cross-polarized channels, and hence SHV =
SVH. Then, the covariance matrix C and the coherency matrix T can
be derived from the coefficient matrix and described as follows.
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Then, polarimetric decomposition provides a good way to

investigate the composition of various urban land covers with
different geometric or dielectric information. A number of
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Fig. 2. Flowchart of this study and the proposed scheme.
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polarimetric decomposition approaches have been proposed based
on the decomposition of backscattering matrix S (e.g Pauli
decomposition), covariance matrix C (e.g. Cloude decomposition,
H/A/Alpha decomposition and Touzi decomposition) and coher-
ency matrix T (e.g. Freeman decomposition, vanZyl decomposition
and Yamaguchi decomposition).

The H/A/Alpha decomposition explains the mechanism of SAR
imaging data, which is comparable to the VIS model in optical
remote sensing data. In this decomposition, H is referred as the
entropy and A is the anisotropy. Therefore, the H/A/Alpha decom-
position was employed to investigate the composition of urban
impervious surfaces to build a new scheme for ISC when using
polarimetric SAR data. The following parts of this section give an
introduction to the fundamental theory of this new scheme for
ISC. By decomposing the coherency matrix, the eigenvalues and
eigenvectors can be calculated. Next, the H/A/Alpha decomposition
method can be applied with Eqs. (4)–(7).

Pi ¼ kiP3
k¼1kk

with
X3
k¼1

Pk ¼ 1

 !
ð4Þ
H ¼
X3
i¼1

Pilog2Pi ð5Þ

A ¼ k2 � k3
k2 þ k3

ð6Þ

Alpha ¼
X3
i¼1

Piai ð7Þ

where ai is the eigenvector parameter and ki (k1 > k2 > k3) are the
eigenvalues in the coherency matrix T. Pi is the pseudo probabili-
ties, indicating the contribution of each ki. H is the scattering
entropy. A is the scattering anisotropy describing the randomness
of scattering. Alpha is related to the scattering direction. For
instance, if the scattering occurs on a surface, Alpha value is 0. If
it is the dihedral scattering, Alpha value is 90o. To understand the
mechanism of different urban surfaces or targets, the H, A and Alpha
can be split according to the split criteria in Table 2. The H-Alpha
plane can be produced following the split criteria. In Table 2, there
are mainly three ranges of H, referring to low entropy (0–0.5), med-
ium entropy (0.5–0.9) and high entropy (0.9–1.0). For each entropy



Table 2
Split criteria of the H-Alpha plane.

H [0 0.5] [0.5 0.9] [0.9 1.0]

Alpha 7 [0 42.5] 4 [0 40] 1 [0 40]
8 (42.5 47.5] 5 (40 50] 2 (40 55]
9 (47.5 90] 6 (50 90] 3 (55 90]

Fig. 3. The H-Alpha planes for the three study cases, warmer colors indicate denser points.
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range, the Alpha is split into three ranges, which are different under
different H ranges. The bounds values of this split criteria were
firstly proposed by Cloude and Pottier (1997) based on the scatter-
ing mechanism analysis. So, they were chosen according to their
physical characteristics but not mathematical inference. A detailed
description of each scattering mechanism under this split criteria
was provided in Cloude and Pottier (1997). This split of the H-
Alpha plane was generically and thus did not depend on any polari-
metric SAR data sets. Although there was no formal mathematical
inference, they have been successfully applied in many researches
with the same splitting criteria. Additionally, due to the averaging
inherent in Eq. (7), not all the values of Alpha are available given
a certain value of entropy (H), leading to a limited region in the
H-Alpha plane. This limited region was described as feasible region
and can be separated by two curves, the solid line in Fig. 4 (Cloude
and Pottier, 1997). More details about the H/A/Alpha decomposition
can be found in numerous previous publications (Cloude and
Pottier, 1997; Lee and Pottier, 2009).

In this study, different polarimetric decomposition methods can
explain the target scattering mechanisms in different ways or from
different aspects. However, their basic scattering mechanisms
mainly include three categories: surface scattering, volume diffu-
sion scattering and double bounce scattering. The strategy of this
study was to combine the components of different polarimetric
decompositions together to provide a more comprehensive
description of the real scattering processes of the targets. Fig. 3
demonstrates the H-Alpha planes for the three study cases. Differ-
ent colors indicate the number of pixels with the corresponding
Entropy and Alpha value, which reflect the dominant backscatter-
ing mechanism in that area.

Table 3 lists all of the polarimetric features extracted by the
decomposition methods mentioned above. The elements of the
coherency matrix are also included. For the convenience of expla-
nation and discussion in the following sections of this paper, all the
features are coded in Table 3.
3.2. The new scheme of impervious surfaces classification

The new scheme proposed in this study refers to the whole clas-
sification procedure of ‘‘9 classes (level III) to 4 classes (level II) to 2
classes (level I)”, which is described in details in Fig. 4 and Table 4.
The new scheme is different from the traditional scheme intro-
duced in Section 1.3, where four land cover types (bright IS, dark
IS, vegetation and soil) were only used. In the traditional scheme,
bright IS and dark IS are defined according to the spectral reflec-
tance of impervious surface. However, this definition becomes
invalid in SAR images as radar is more sensitive to the geometric
properties of land covers. Therefore, we propose a new scheme
using nine land cover types at the beginning (level III) according
to the backscattering features of land covers (Fig. 4). The new clas-
sification scheme starts from the H/A/Alpha decomposition to ana-
lyze various landscapes including urban landscapes and others.
The theoretical distribution of these nine land covers type on the
H-Alpha plane is shown in Fig. 4.

When considering urban landscapes, the nine different
backscattering mechanisms can be specified according to various
urban land covers and terrains. Conventionally, typical urban
land cover types including vegetation, impervious surfaces, bare
soil and water surface. In the conventional optical remote sens-
ing data, water surface can be relatively easily identified due to
its low reflectance. However, in the side-looking SAR data, water
surface can have a relatively complex backscattering mechanism
depending on its location and relationship to its surroundings
(e.g., vegetation and buildings). Therefore, water surface may
not be easily masked out when using polarimetric SAR data.
Similarly, vegetation, impervious surfaces and bare soil can be
complex depending mainly on their geometric structures, their
alignments compared with the side-looking direction and their
surface roughness compared with the wavelength of the micro-
wave. With the analysis of the nine different mechanisms in the
H-Alpha plane, the urban land covers were further divided into



Table 3
Polarimetric features used in this study.

Code Name of features Description Code Name of features Description

B1 T11 B1-B9 are elements of the T matrix. Tij is
the ith row and jth column element

B22 Lambda B16-28 are components from
H/A/Alpha decompositionB2 T12_real B23 Alpha1

B3 T12_image B24 Alpha2
B4 T13_real B25 Alpha3
B5 T13_image B26 Lambda1
B6 T22 B27 Lambda2
B7 T23_real B28 Lambda3
B8 T23_image B29 Pauli_R B 29-B31 are components from

Pauli decompositionB9 T33 B30 Pauli_G
B10 Cloude_DBL B10-B12 are components from Cloude

decomposition
B31 Pauli_B

B11 Cloude_VOL B32 Touzi_Psi B31-B33 are components from
Touzi decompositionB12 Coude_SURF B33 Touzi_A

B13 Freeman_DBL B13-B15 are components from Freeman
decomposition

B34 Touzi_T
B14 Freeman_VOL B35 Touzi_Phi
B15 Freeman_SURF B36 vanZyl_DBL B36-B38 are components from

vanZyl decompositionB16 Entropy B16-28 are components from H/A/Alpha
decomposition

B37 vanZyl_VOL
B17 Anisotropy B38 vanZyl_SURF
B18 Alpha B39 Yama_DBL B39-B42 are components from

Yamaguchi decompositionB19 Beta B40 Yama_VOL
B20 Delta B41 Yama_SURF
B21 Gamma B42 Yama_HLX
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Fig. 4. Projection of urban impervious surfaces and other land covers on the H–a plane, the solid line separates the feasible region (left) and infeasible regions (right).
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nine different types, include two types of impervious surfaces
(IS1 and IS2), three vegetation types (VEG1, VEG2 and VEG3),
three water types (WAT1, WAT2 and WAT3) and one type of
bare soil (SOI).

Detailed definitions and descriptions of the nine types of urban
land covers are provided in Table 4. For the two types of impervi-
ous surfaces, IS1 denotes the double reflection propagation imper-
vious surfaces, which mainly include buildings aligned on the
looking direction of the SAR satellites. Pavement, such as roads,
highways and parking lots, aligned on the looking direction
together with surrounding buildings, also falls into this category.
Low density buildings and ground-wall structures with double
reflectors also mainly fall into this category. IS1 falls within Zones
1, 4 and 7 on the H-Alpha plane, which are all characterized with
double bounce scattering. IS2 denotes the random anisotropic
impervious surfaces, which mainly include buildings and pave-
ment aligned not parallel to the radar flight pass. IS2 also includes
wide roads, parking lots and high density and small buildings with
irregular alignment. IS2 falls mainly within Zones 2, 5 and 8 on the
H-Alpha plane, which are characterized with volume scattering.
Vegetation was divided into three sub-categories: random aniso-
tropic vegetation (VEG1), random surface vegetation (VEG2) and
double reflection propagation vegetation (VEG3). Vegetation is
one of the most complex terrains for SAR remote sensing data.
Vegetation can have diverse scattering mechanisms corresponding
to the structures of leafs, tree types, stands, growing stages, and



Table 4
New definitions of urban land covers with polarimetric SAR data.

Land Cover
Types (Level I)

Land cover
Subtypes (Level II)

Subtypes under the new
scheme (Level III)

Basic description

Impervious
Surfaces (IS)

IS IS1 Double reflection propagation impervious surfaces: medium entropy, building blocks and
pavement aligned on looking directions, low density buildings and ground-wall structures
with double reflectors. IS1 is located mainly in Zones 1, 4 & 7

IS2 Random anisotropic impervious surfaces: high entropy, building blocks and pavement
aligned vertically to looking directions, wide roads, parking lots and high density buildings.
IS2 is located mainly in Zones 2, 5 & 8

Non-Impervious
Surfaces
(NIS)

Vegetation (VEG) VEG1 Random anisotropic vegetation, high entropy vegetation scattering (needles types), almost no
polarization dependence. It is mainly located in Zone 2

VEG2 Random surface vegetation, medium entropy, vegetation with surface roughness (leafs). It is
mainly located in Zone 6

VEG3 Double reflection propagation vegetation, medium entropy multiple scattering, double
reflection occurs with propagation through a canopy. It is mainly located in Zone 4

Water (WAT) WAT1 Brag water surface, very smooth water surface, low entropy, and coastal sea water. It is
mainly located in Zone 9

WAT2 Double reflection water surface, inland lakes surrounded by trees or buildings. It is mainly
located in Zone 4

WAT3 Random surface water, medium entropy water surface, inland lakes with random plants
(random roughness). It is mainly located in Zone 6

Bare soil (SOI) SOI Random surface bare soil, medium entropy with random surface roughness. It mainly falls
into Zones 6 and 9
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forest types. The three types of vegetation fall within Zones 2, 6
and 4, respectively. Water surfaces were also divided into three
sub-categories, the Brag water surface (WAT1), double reflection
water surface (WAT2) and random water surface (WAT3). Com-
monly, open waters with large surface areas and without sur-
rounding buildings or vegetation should be characterized by Brag
scattering. However, if the water body (e.g., lakes and rivers) are
surrounded by buildings or trees, it can appear as double or ran-
dom scattering. Moreover, algae or algal blooms in the lakes can
increase the roughness of water surface, making it a random water
surface. It should be noted that WAT2 and WAT3 may not always
be present in any areas, depending on the specific landscape. The
three types of water surfaces mainly fall within Zones 9, 4 and 6,
respectively. Lastly, the bare soil is often characterized by random
scattering and falls within Zones 6 and 9. Compared to the case in
optical data where bare soils are often confused with bright or dark
impervious surfaces, the bare soil in polarimetric SAR data is rela-
tively simple to identify from impervious surfaces.

From the description and discussion of the impervious surfaces
and non-impervious surfaces, three important comments should
be noted. First, ISC from polarimetric SAR data is a totally different
task compared with ISC from optical data. For instance, the com-
mon bright impervious surfaces and dark impervious surfaces in
optical data have a totally different meaning in polarimetric SAR
data. In optical data, high or low spectral reflectance depends on
the material or chemical composition of the land surface. However,
in SAR data, high or low backscattering coefficients depends on the
geometrically properties of the surfaces, with little impacts from
the materials. Therefore, the approaches to extract bright and dark
impervious surfaces from optical data cannot be applied to SAR
data for the same purpose. Instead, in this study, double reflection
propagation impervious surfaces (IS1) and random anisotropic
impervious surfaces (IS2) are identified from polarimetric SAR
data. The vegetation, water and bare soil are also different than
those derived from optical data. Secondly, ISC from polarimetric
SAR data is not an easy task due to the diversity and confusion of
scattering mechanisms between impervious surface types and
non-impervious surface types. For instance, the land cover types
of IS1, VEG3 andWAT2 all fall within Zone 4 and share similar scat-
tering characteristics in polarimetric SAR data. Furthermore, it is
difficult to extract one impervious surface type accurately since
it falls into different zones. For instance, IS1 falls into Zones 1, 4
and 7, and in each zone, there are different confusions and mix-
tures between IS1 and other non-impervious surface types. Thirdly,
vegetation is the most challenging land cover to separate from
impervious surfaces. There are several confusions between these
two major land cover types, including the confusion between IS2
and VEG1 in Zone 2, confusion between IS1 and VEG3 in Zone 4,
and potential confusion between IS2 and VEG 2 in Zones 5 and 6.
Generally, the success of ISC in polarimetric SAR data under the
new scheme would mainly depend on the solution to these three
issues.

3.3. ISC with classification and regression tree (CART)

CART was selected as the classification method based on the
polarimetric features. CART is one of the best classifiers according
to the literature. It is a good classifier that is comparable to other
frequently used ones, such as support vector machine and random
forest. The most important reason we chose CART was that it
provides an understandable and comprehensive decision tree,
which show how different land cover classes are identified in the
decision tree.

Conventionally, several algorithms have been proposed to build
a CART based on the training samples in a supervised manner,
including the Fast Algorithm for Classification Trees (FACT), Classi-
fication Rule with Unbiased Interaction Selection and Estimation
(CRUISE), Generalized, Unbiased Interaction Detection and Estima-
tion (GUIDE) and Quick, Unbiased, Efficient, Statistical Tree
(QUEST) (Loh, 2011). The measurement criteria of node impurity
and node splits are slightly different using different algorithms,
while the applications of the built-up CART for different algorithms
are exactly the same. In this study, the CRUISE was employed to
build the CART for urban land cover classification. CRUISE uses
unbiased multiway splits, which were reported to have negligible
bias in variable selection (Kim and Loh, 2001). A detailed descrip-
tion of the principles of the CRUISE algorithm is found in Kim and
Loh (2001).

Three CARTs were built based on the training samples to clas-
sify the Radarsat-2 data of the three study cases. The CART was
composed of decision nodes and result nodes. Decision nodes were
built to decide which branch should go on the decision tree based
on the judging condition of each decision node. Each judging con-
dition was for one feature band in Table 3 and was generated by
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the CRUISE algorithm. Result nodes were the leaves of the decision
tree and represented the final decision of land cover types from all
previous parent decision nodes. Finally, a total of 147 nodes were
built for the Shenzhen case, 59 nodes for the Hong Kong case
and 145 nodes for the Macau case.

3.4. Validation and accuracy assessment

3.4.1. Reference data for validation
Reference data of various urban land cover classes in the three

selected sites under the new classification scheme were obtained
by a field survey and visual interpretation of corresponding very
high resolution optical satellite images. Generally, reference sam-
ples were collected randomly following the simple random schema
and cluster schema (Jensen, 2007; Zhang et al., 2013). This com-
bined random sampling schema considered both the correlations
among neighbor pixels and the labor work during sampling in
the field survey and visual interpretation over high resolution
images. In this study, three field surveys were conducted in the
PRD region from 2013 to 2016, including one survey in Yuen Long,
Hong Kong in October 2013, one survey in Shenzhen, Mainland
China in January 2016 and one survey in Taipa, Macau in April
2016. Location information and on-site photos for various land
cover types were taken during the field survey in the study sites.
However, the dates of these field surveys were not strictly the
same as the dates of the satellite data used in this study. To avoid
any possible land cover changes, very high resolution optical satel-
lite data from Worldview-2 and Google Earth were used for select-
ing the reference data by visual interpretation with the aid of the
collected field data. Finally, a set of reference samples were care-
fully selected for the three study sites, which are listed in Table 5.
A total of 2910 samples (pixels) were selected in Shenzhen, 3068
samples in Hong Kong and 2702 samples in Macau. The class
WAT2 was not present in the Macau site because there were no
inland lakes surrounded by tall trees or tall buildings. These sam-
ples were selected according to the new classification scheme
under the new subtypes of land covers defined in Table 5. For each
site, 40% of the samples were selected for training the classifier,
while 60% were selected for testing the accuracy of the results. This
portion was determined empirically with a consideration of testing
the robustness of the methodology. Previously, we used a portion
of 30–60% to set the training samples out of all the samples, and
a portion of 40–70% to set the testing samples (Zhang et al.,
2018; Zhang et al., 2016; Zhang and Xu, 2018; Zhang et al.,
2014). To select the portion of training and testing samples, it is
assumed that a lower portion of training samples can better reflect
the effectiveness of the proposed methodology (Zhang et al., 2018).

3.4.2. Accuracy assessment
The results of the classified urban land covers and estimated

impervious surfaces were validated with the testing samples
Table 5
Distribution of reference samples at the three sites (40% for training and 60% for
testing).

Subtypes under the new scheme Shenzhen Hong Kong Macau

IS1 317 316 403
IS2 321 430 316
VEG1 303 406 315
VEG2 437 328 321
VEG3 312 306 309
WAT1 237 313 342
WAT2 315 308 –
WAT3 299 347 345
SOI 369 314 351

Total samples 2910 3068 2702
described in Table 5. The assessment included three different
aspects. First, in the built CART models, the number of decision
nodes can be used to indicate the importance of every polarimetric
feature derived from various decomposition methods, while the
number of result nodes (leaves) can represent the complexity of
the land cover classes or subclasses. Therefore, these two indices
were employed to assess and analyze the importance of extracted
features and the complexity or difficulty of each land cover type.
Secondly, the conventional confusion matrix was employed to
compute the overall accuracy, Kappa coefficient, producer’s accu-
racy and user’s accuracy based on the testing samples. Details on
how to calculate and understand the confusion matrix and related
accuracy measures can be found in numerous publications (Jensen,
2007; Zhang et al., 2013). Thirdly, the evaluation of the number of
nodes in CARTs and the confusion-matrix-based accuracies were
applied at three different levels: the land cover subtypes level
(Level III), reflecting the backscattering mechanism of each type;
the general land cover level (Level II), representing the conven-
tional land covers; and the impervious surfaces classification (Level
I), indicating the final results of estimated impervious surfaces.
4. Results and discussion

4.1. Polarimetric decomposition using different models

Polarimetric features were obtained by applying various
decomposition methods. These polarimetric features reflect the
backscattering mechanisms between the microwave and the land
surfaces. Figs. 5–7 demonstrate the false color composition of the
polarimetric features under different decompositions in the three
study cases. In these figures, different colors represent different
backscattering types. From these figures, land covers such as veg-
etation, water surface and urban areas can be generally separated.
However, a complex scene can be observed in the urban areas,
where several different colors were highly mixed together, indicat-
ing the complex backscattering mechanisms in urban areas. In gen-
eral, the colors are consistent between Pauli decomposition and
vanZyl decomposition, as well as between Freeman and Yamaguchi
Four-Component Decomposition (Yamaguchi-4). The color repre-
sentations of Cloude decomposition and the H/A/Alpha decomposi-
tion are different from others.

The false color composition in Hong Kong was generally consis-
tent with the one in Shenzhen. The Cloude decomposition had sim-
ilar colors as the Pauli and vanZyl decompositions. The urban area
was characterized by various and fragmented land covers with dif-
ferent colors. There are many small boats on the northwestern cor-
ner of the image that were mistakenly identified as vegetation.

The false color polarimetric feature compositions in Macau are
shown in Fig. 7. The patterns were generally consistent with that
from the Shenzhen case. Compared with the previous two study
sites, the surrounding areas in this image were mainly sea surface,
which can be relatively easy to identify in all types of polarimetric
decomposition results. Moreover, there was proportionally less
urban area in Macau, and it was mixed with different land cover
types.
4.2. Land cover classification results at different levels

The urban land covers were classified using the polarimetric
features under the new classification scheme, which is shown in
Fig. 8(a)–(c). Various impervious surfaces types were mixed
together in the urban area, while various vegetation types were
highly mixed in the mountain and urban areas. Water surfaces
could generally be classified, but there were still mixtures in the



Fig. 5. Typical polarimetric decompositions (Shenzhen), referring to the name of features in Table 3, the R-G-B false color in each sub-figure is composited as (a) Pauli_R :
Pauli_G : Pauli_B, (b) Cloude_DBL : Cloude_VOL : Cloude_SURF, (c) Freeman_DBL : Freeman_VOL : Freeman_SURF, (d) vanZyl_DBL : vanZyl_VOL : vanZyl _SURF, (e) Entropy :
Anisotropy : Alpha, (f) Yama_DBL : Yama _VOL : Yama _SURF. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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open sea water, particularly in the northwestern part of Hong
Kong.

The new classification scheme is proposed based on the
backscattering mechanisms, and these land cover subtypes do
not have physical meanings for urban land cover management.
Therefore, these land cover subtypes at Level III were combined
to the land covers at Level II, which are the traditional land covers.
Fig. 8(d)–(f) demonstrates the results of land cover classification at
Level II, including the water surfaces, vegetation, impervious sur-
faces and bare soil. In the Level II classification results, small boats
in all the three study cases were clearly identified, which is quite
different from the traditional case in optical remote sensing appli-
cations. Theoretically, small boats cannot be clearly identified from
satellite data at a resolution of approximately 8 m. Boats are often
made of metal materials, which are electrically conducted and can
strongly reflect the microwave from SAR satellites. This makes the
backscattering signals stronger than usual land surfaces and
results in a clear presence in the SAR data. From Fig. 8(d)–(f), these
boats were recognized as both vegetation and impervious surfaces
because they contribute to double bounce reflectance, which can
be found in both impervious surfaces (e.g., tall buildings) and veg-
etation (e.g., tall trees).

Finally, the land covers at Level II were combined to the imper-
vious surfaces at Level I, which is demonstrated in Fig. 8(g)–(i).
Three different patterns of the distribution of impervious surfaces
can be observed in Fig. 8(g)–(i), showing a highly urbanized area in
Shenzhen, a median urbanized or suburban area in Hong Kong, and
a small urbanized region in Macau. The small urbanized region is
Wang Kam Island, which is mainly rural area and mountain and
belongs to Zhuhai, an adjacent city next to Macau. However, there
was noise of impervious surfaces in the vegetation area in all the
three study cases, indicating the complex confusion between
impervious surfaces and vegetation in polarimetric SAR data. The
confusion can be interpreted from the definition of the new classi-
fication scheme in Fig. 4 and Table 4. A more insightful discussion
will be provided in Section 4.4.

4.3. Importance of various polarimetric features

The number of decision nodes for a polarimetric feature in the
CART can indicate the importance of that feature. Therefore, statis-
tics were calculated through the whole CART model for all the
polarimetric features. Interestingly, not all the features were actu-
ally used in the CART to conduct the land cover classification, but
some features were used many times. Fig. 9(a, c & e) show the sta-
tistical results for the three study sites. In Shenzhen, the Entropy
from the H/A/Alpha decomposition was used 21 times in the whole
decision tree. The Freeman_VOL component from Freeman decom-
position and the Alpha from H/A/Alpha decomposition were used 8
times. Other components from H/A/Alpha decomposition included
Alpha1, Anisotropic and Lambda features, which were used 6, 3
and 3 times, respectively. In addition, the Touzi_Psi component
from Touzi decomposition was also used 5 times. As a result, the
H/A/Alpha decomposition was the most important decomposition
for land cover classification under the new definition of land cov-
ers. In Hong Kong, the H/A/Alpha components Alpha, Lambda2,
Anisotropy and Alpha1 were used 7, 5, 3 and 2 times in the deci-
sion tree, respectively, indicating the importance of this decompo-
sition. However, the vanZyl decomposition (vanZyl_VOL) was also
important and had 7 decision nodes in the CART. Other important
decompositions included the element of T matrix (T22) and the
Cloude decomposition (Cloud_DBL). In Macau, the H/A/Alpha



Fig. 6. Typical polarimetric decompositions (Hong Kong), referring to the name of features in Table 3, the R-G-B false color in each sub-figure is composited as (a) Pauli_R :
Pauli_G : Pauli_B, (b) Cloude_DBL : Cloude_VOL : Cloude_SURF, (c) Freeman_DBL : Freeman_VOL : Freeman_SURF, (d) vanZyl_DBL : vanZyl_VOL : vanZyl _SURF, (e) Entropy :
Anisotropy : Alpha, (f) Yama_DBL : Yama _VOL : Yama _SURF. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 7. Typical polarimetric decompositions (Macau), referring to the name of features in Table 3, the R-G-B false color in each sub-figure is composited as (a) Pauli_R : Pauli_G
: Pauli_B, (b) Cloude_DBL : Cloude_VOL : Cloude_SURF, (c) Freeman_DBL : Freeman_VOL : Freeman_SURF, (d) vanZyl_DBL : vanZyl_VOL : vanZyl _SURF, (e) Entropy :
Anisotropy : Alpha, (f) Yama_DBL : Yama _VOL : Yama _SURF. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 8. LULC classification at different levels, (a)–(c) original classes, (d)–(f) subclasses combined, (g)–(i) combined impervious surfaces and non-impervious surfaces.
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decomposition was a dominant contributor to the classification,
with the components of Alpha, Anisotropy, Entropy, Lambda4 used
16, 11, 10 and 4 times, respectively, among a total of 72 decision
nodes in the CART. Therefore, 57% of the decision nodes were based
on the H/A/Alpha decomposition. Other important components
included the vanZyl decomposition (vanZyl-DBL) and Yamaguchi
4-component decomposition (Yama_VOL).

Additionally, another aspect to reflect the importance of fea-
ture in CART is the impurity of each node. During the training of
CART, Gini index was used as a measure of impurity to evaluate
the importance of variables (features) to optimize each node.
Gini index was within the range between 0 and 1. Commonly,
a lower impurity (Gini index) value indicates a better split in
a node based on the separation of the samples being considered.
Therefore, the impurity measure of a feature in a node can
reflect the importance of that feature on the node, but cannot
reflect its importance on the whole decision tree as the impurity
does not consider the frequency of the feature used in the whole
decision tree. In this study, as additional information to assess
the importance of features, the average Gini index of each fea-
ture was calculated over the whole CART by averaging the Gini
index values in all the nodes that used the corresponding fea-
ture. Fig. 9(b, d & f) demonstrate the statistics of the average
Gini index of those features with lower values in all the three
study cases. Generally, the most pure features in the CART were
not those most frequently used features. From the results, the
elements in the T matrix tended to be more pure than other fea-
tures from polarimetric decompositions, especially the case in
Shenzhen (Fig. 9d). The results were reasonable since the local
importance and global importance of a feature were not neces-
sarily consistent when building the CART. For instance, one fea-
ture with low impurity indicates it is important to split the node
with a given subset of samples. Thus, this importance is only
applicable over the subset of samples. If the feature is not used
frequently in the whole CART, it means it is not so important in
other samples. That is to say, the Gini index reflects the local
importance of features.

Therefore, the importance analysis of these decision nodes in
the three cases indicated that the H/A/Alpha is the most important
polarmetric decomposition for the land cover classification under
the new scheme, while the other features provided important sup-
plementary information at the local scale during the classification
procedure. This result supports the fundamental theory of the pro-
posed methodology to identify the distribution of various
backscattering mechanisms and the distribution of various land
covers on the H-Alpha plane. Additionally, other decompositions
can also provide some complementary information, such as the
Freeman decomposition, vanZyl decomposition, Cloude decompo-
sition, Touzi decomposition and Yamaguchi decomposition. Espe-
cially, from the evaluation of node impurity, the elements of T
matrix illustrated local importance in determining some nodes in
the CART model. However, their contributions varied in different
cases, and one part of their components contributed to the CART
models.



Fig. 9. The number of decision nodes and average Gini index for each feature in the CART.
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4.4. Difficulty and land cover confusion assessment of the new scheme
for ISC

Confusions between different land cover types have been
widely identified in optical remote sensing data due to the confu-
sion of spectral signatures between different land covers. This
spectral confusion issue has been intensively studied and dis-
cussed as an important challenge in land use/land cover monitor-
ing using optical remote sensing data. Similarly, under the new
scheme of urban land cover classification using polarimetric SAR
data, confusions between various land covers are also a challenging
issue. However, these confusions are different than spectral confu-
sions because of the special working mechanism of SAR remote
sensing. In this section, two different measures were employed
to assess these land cover confusions: (1) the number of result
nodes (leaves) in the CART model, and (2) the producer’s and user’s
accuracies, which were calculated from the confusion matrix based
on the testing samples. Moreover, to provide a comprehensive
understanding of the confusion issue, this assessment was con-
ducted at three different levels, the subtypes of land covers level
(Level III), the general land covers level (Level II) and the impervi-
ous surfaces and non-impervious surfaces level (Level I), which
were presented in Table 4 of Section 3.2.

Fig. 10(a)–(c) illustrates the assessment at Level III classification
of the three study sites. The observed patterns are quite different in
the three cases. The numbers of leaves in CART were generally
higher in Shenzhen and Macau than in Hong Kong, which may
indicate that it was more difficult to classify the land covers in
Shenzhen and Macau using CART. In the Shenzhen site, IS1, VEG1
and SOI had more result nodes than other land cover types, which
showed the complexity of these classes. The complex classes were
IS2, VEG1, VEG3 and SOI in Hong Kong, and VEG1, VEG2 and VEG3
in Macau. Therefore, we found that vegetation is a general
challenge in all three cases, while other challenging classes were



Fig. 10. Difficulty analysis at the level of land cover subclasses (a–c), general land covers (d–f) and impervious surfaces classification (g–i), panels a, d & g for Shenzhen, b, e &
h for Hong Kong, c, f & i for Macau.
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differed by case. The accuracy based on the confusion matrix also
demonstrated different patterns in the three cases. The overall
accuracy (OA) and Kappa coefficient were the highest in Shenzhen
(OA: 89.03%; Kappa: 0.8762), while Hong Kong obtained the lowest
accuracy (OA: 60.52%; Kappa: 0.5546). The producer’s and user’s
accuracies showed that various land cover classes were well bal-
anced in Shenzhen. In Hong Kong, the producer’s and user’s accu-
racies of VEG3 and WAT2 were rather low, which led to the low
overall accuracy and Kappa coefficient. In contrast, the producer’s
and user’s accuracies in Macau showed a fluctuation among differ-
ent land cover classes but generally at a medium level. The OA in
Macau was 77.71%, and the Kappa coefficient was 0.7446.

Confusions between various land cover subclasses are shown in
Fig. 10(a)–(c), especially within the subclasses of impervious sur-
faces, vegetation and water surfaces. However, these subclasses
were derived from their backscattering mechanism with polari-
metric SAR data, and they do not have significant physical meaning
in the real world. Therefore, these subclasses were combined to
generate general land cover classes that had the same meaning
as those generated from optical remote sensing, which are gener-
ally used in the urban planning and management fields. Fig. 10
(d)–(f) illustrates the results after combining the general land
cover classes. Generally, the distribution of the number of result
nodes in CART models was clearer among the land cover classes,
and the overall accuracy and Kappa coefficient were improved over
all the three cases. In all the three study sites, vegetation required
the highest number of result nodes in the CART models, while
water used the least nodes. The overall accuracy and Kappa coeffi-
cient were 93.49% and 0.9092 in Shenzhen, 84.60% and 0.7864 in
Hong Kong and 92.67% and 0.8989 in Macau. These accuracies
were comparable with those from land cover classifications using
optical remote sensing data in previous studies (Zhang et al.,
2012; Zhang et al., 2014). This result also indicated the effective-
ness of urban land cover classification using polarimetric SAR data
alone, without the additional support of optical data. However, we
also observed several special difficulties of identifying certain land
covers using polarimetric SAR data under the new scheme. For
instance, the producer’s and user’s accuracies of vegetation and
bare soil were generally lower than other land cover types, which
was caused by the complex backscattering mechanisms illustrated
in Fig. 4. With the highest producer’s and user’s accuracies, water
surface was the easiest to recognize with the polarmetric SAR data.

Finally, the land cover classes of non-impervious surfaces were
combined to generate the final impervious surfaces classification,
and the number of result nodes in CARTs and the confusion-
matrix-based accuracies were calculated (Fig. 10(g)–(i)), where
two findings can be observed. First, the total number of result
nodes for non-impervious surfaces was obviously higher than that
of impervious surfaces. This is understandable because the non-
impervious surfaces were much more complex and included vari-
ous types of land covers and their subclasses. Additionally, the
overall accuracy and Kappa coefficient were significant improved
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and higher than 93% and 0.83, respectively, in all three cases. This
result indicates the rather promising effectiveness of the newly
proposed classification scheme for impervious surfaces classifica-
tion. Moreover, the producer’s and user’s accuracies showed that
non-impervious surfaces could be better recognized than impervi-
ous surfaces in the general condition. Interestingly, the overall
accuracy and Kappa coefficient were highest in Shenzhen at the
level of land cover types (Level II) and subtypes (Level III). Never-
theless, the highest accuracy in the final impervious surfaces clas-
sification was obtained in Macau. This result demonstrates that
more of the land cover confusions happened among the non-
impervious surfaces covers in Macau, and these confusions were
avoided in the final impervious surfaces classification.

4.5. Comparison with ISC results using traditional scheme

In order to further assess the effectiveness of the proposed new
scheme under the polarimetric SAR data, the traditional VIS-based
scheme was employed to be compared. Since the VIS scheme only
contains three components, vegetation, impervious surfaces and
bare soils, the water component was added. Theoretically, the
main differences between the traditional and the proposed
schemes originate from the differences between the optical remote
sensing data and SAR data that the former uses reflectance spectra
features to distinguish impervious surface from other land cover
types, while the latter uses backscattering features. In the tradi-
tional scheme, bright impervious surface is easily confused with
dry bare soil due to their high spectral reflectance, while dark
impervious surface is easily confused with water and shaded areas
due to their low spectral reflectance (Weng, 2012; Weng and Hu,
2008; Wu et al., 2008; Zhang et al., 2015; Zhang et al., 2014). In
the new scheme, these land cover confusions have been changed
in SAR images because of their different backscattering features.
Under the new scheme, impervious surface types located in Zones
1, 5, 7 and 8 are less confused with other land covers since their
backscattering mechanisms are typical, shown in Fig. 4. However,
instead, confusions occur between impervious surface types and
Table 6
Confusion matrix (Level II) between the proposed and traditional schemes.

IS VEG WAT SOI This Study

IS 338 21 0 3 Shenzhen:
OA: 93.49%; Kappa: 0.9092VEG 42 597 2 22

WAT 0 2 506 1
SOI 4 13 4 196

IS 381 45 0 1 Hong Kong:
OA: 84.60%; Kappa: 0.7864VEG 64 479 21 42

WAT 0 16 556 2
SOI 3 85 5 144

IS 412 14 0 7 Macau:
OA: 92.67%; Kappa: 0.8989VEG 20 521 7 15

WAT 0 8 402 19
SOI 0 25 4 170

Table 7
Confusion matrix (Level I) between the proposed and traditional schemes.

IS NIS This Study

IS 338 24 Shenzhen:
OA: 96.00%; Kappa: 0.8808NIS 46 1343

IS 381 46 Hong Kong:
OA: 93.87%; Kappa: 0.8307NIS 67 1350

IS 412 21 Macau:
OA: 97.46%; Kappa: 0.9354NIS 20 1171
non-impervious surface types in Zones 2&4, where IS2 is confused
with VEG1 and IS1 is confused with VEG3 and WAT2. These
backscattering confusions remain difficult to address in the pro-
posed scheme. One possible solution is to incorporate optical and
SAR images, since these confusions may be not confused in optical
images. Therefore, one recommendation about the future work is
to incorporate optical and SAR images to reduce the confusions
shown in Zones 2 and 4.

In order to provide a more reasonable comparison, all the
polarimetric features were the same in both traditional approach
and this study. Then, the implementation of the traditional
approach for impervious surfaces classification was a two-step
approach, land cover classification at Level II and combinations of
impervious classes at Level I (Table 4). Therefore, the comparison
between the traditional approach and the proposed approach can
only be conducted at Level II and Level I. Moreover, the same sam-
ples were used as the testing samples for accuracy assessment. The
confusion matrix and accuracy assessment were shown in Table 6
(Level II) and Table 7 (Level I). Firstly, Table 6 demonstrated the
classification at Level II, where both the overall accuracy and Kappa
coefficients were generally improved by about 1–4% over the three
study cases. Shenzhen and Hong Kong witnessed more improve-
ment with a significant reduce of confusion between impervious
surfaces and vegetation. This was consistent with the previous
findings in this study that different subclasses of vegetation can
have confusions with different subclasses of impervious surfaces,
in Zones 2&4 in Fig. 4. The results indicated that the use of sub-
classes in Level III was able to improve the classification results
as it considered the scattering mechanisms of each subclass of
the traditional VIS-based classes. However, the classification of
water surface and bare soil did not have significant difference
between the traditional and proposed approaches.

Secondly, after combining the impervious classes and non-
impervious classes, Table 7 demonstrates the accuracy assessment
results of the comparison at Level I. The overall accuracy and Kappa
coefficients increased in the classification at Level I. However,
when comparing the accuracies between the traditional and pro-
IS VEG WAT SOI Traditional

263 0 0 9 Shenzhen:
OA: 89.03%; Kappa: 0.8462107 601 1 23

0 2 505 0
14 30 6 190

249 1 0 0 Hong Kong:
OA: 80.69%; Kappa: 0.7238198 592 35 85

0 0 543 0
1 32 4 104

361 13 0 2 Macau:
OA: 91.57%; Kappa: 0.882759 529 0 14

0 2 596 19
5 24 15 176

IS VEG Traditional

263 9 Shenzhen:
OA: 92.58%; Kappa: 0.7578121 1358

249 1 Hong Kong:
OA: 89.15%; Kappa: 0.6531199 1395

361 15 Macau:
OA: 95.65%; Kappa: 0.873664 1375



H. Zhang et al. / ISPRS Journal of Photogrammetry and Remote Sensing 139 (2018) 103–118 117
posed schemes, both the overall accuracy and Kappa coefficient
increased by 1.5–4.6%, which was higher than that at Level II. This
result indicated that the confusion between vegetation and imper-
vious surfaces was playing a key role during the classification using
polarimetric SAR data, and hence the reducing of this confusion
was able to improve the accuracy on the final impervious surfaces
classification.
5. Conclusions

The backscattering mechanism of polarimetric SAR data for
urban land cover classification and impervious surfaces classifica-
tion was investigated in this study. Compared with the V-I-S con-
ceptual model for mapping impervious surfaces in optical remote
sensing data, this paper proposed a new classification scheme by
defining different land cover subtypes according to their polari-
metric backscattering mechanism. Three scenes of fully polarimet-
ric Radsarsat-2 data in the cities of Shenzhen, Hong Kong and
Macau were employed to test and validate the proposed method-
ology. Several interesting findings were observed. First, the impor-
tance of different polarimetric features and land cover confusions
were investigated and indicated that the alpha, entropy and aniso-
tropy from the H/A/Alpha decomposition were more important
than other features. One or two, but not all, components from other
decompositions also contributed to the results. Additionally, the
confusion and difficulty analyses demonstrated that vegetation
was a challenging and difficult land cover to identify in SAR data
because it was confused with impervious surfaces in different
ways, including double bounce scattering, volume scattering and
surface scattering. Finally, the accuracy assessment showed that
the overall accuracy and Kappa coefficient were 96.00% and
0.8808 in Shenzhen, 93.87% and 0.8307 in Hong Kong and 97.48%
and 0.9354 in Macau, respectively, indicating the promising appli-
cability and great potential of the new scheme for impervious sur-
faces classification using polarimetric SAR data.
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